Primordial Nucleosynthesis Constraints on Z' Properties

Hye-Sung Lee

(University of Wisconsin - Madison)

based on work with V. Barger and P. Langacker [Phy. Rev. D 67, 075009]

- Our Z' model
- Decoupling of a Particle
- Big Bang Nucleosynthesis
- Numerical Results
- Conclusion

E_6 -motivated Z' Model

Many models from String theory or GUT predict additional neutral gauge bosons (Z').

TeV-scale Z' models can solve μ problem in MSSM. $(\mu \hat{H}_1 \cdot \hat{H}_2 \to h_s \hat{S} \hat{H}_1 \cdot \hat{H}_2)$

Especially, some String compactifications lead to E_6 gauge group.

$$E_6 \rightarrow SO(10) \times U(1)_{\psi}$$

 $\rightarrow SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$
 $\rightarrow \{\text{SM group}\} \times U(1)_{\chi} \times U(1)_{\psi}$

But, canonical E_6 GUT is hard to lead to TeV-scale Z' since E_6 exotics at TeV-scale lead to too rapid proton decay.

In any case, taking E_6 charge assignments is a safe way to introduce an anomaly-free U(1)' model.

Our Model

We assume only one linear combination, U(1)' survives at TeV-scale.

- gauge boson of U(1)': Z'
- charge of U(1)': $Q=Q_\chi\cos\theta_{E_6}+Q_\psi\sin\theta_{E_6}$ $\left(\theta_{E_6}: \text{mixing angle of } U(1)_\chi \text{ and } U(1)_\psi\right)$
- We take coupling constant and charges from (anomaly-free) E_6 GUT.

$$g_Z' = \sqrt{\frac{5}{3}} g_Z \sin \theta_W$$

(where
$$g_Z \equiv \sqrt{g_1^2 + g_2^2}$$
)

• Family-universal U(1)' charges :

Field	Q_{χ}	Q_{ψ}
$\left[egin{array}{c} \left(egin{array}{c} u_L \ d_L \end{array} ight) \end{array} ight]$	$-\frac{1}{2\sqrt{10}}$	$\frac{1}{2\sqrt{6}}$
u_R	$\frac{1}{2\sqrt{10}}$	$-\frac{1}{2\sqrt{6}}$
d_R	$-\frac{3}{2\sqrt{10}}$	$-\frac{1}{2\sqrt{6}}$
$egin{pmatrix} (u_L \ e_L \end{pmatrix}$	$\frac{3}{2\sqrt{10}}$	$\frac{1}{2\sqrt{6}}$
$ u_R$	$\frac{5}{2\sqrt{10}}$	$-\frac{1}{2\sqrt{6}}$
e_R	$\frac{1}{2\sqrt{10}}$	$-\frac{1}{2\sqrt{6}}$

• Non-zero ν_R charges: Ordinary seesaw forbidden (since $m_{\nu_R} \lesssim U(1)'$ breaking scale) except for a θ_{E_6} that makes $Q(\nu_R) = 0$.

- ullet u_R in our model:
 - 3 Dirac particles $(m_{\nu}\bar{\nu}_{L}\nu_{R}+h.c.)$
 - negligibly small mass
 (by some mechanism such as higher-dim operator or large extra dim.)
 - SM singlet (couples only to Z^\prime)

Z-Z' Mixing

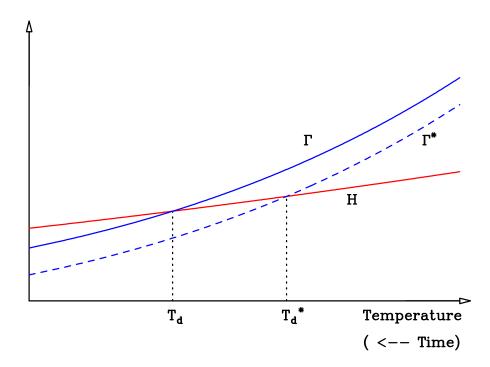
After EW and U(1)' symmetry breaking, 2 neutral massive gauge bosons Z and Z' can mix (with mixing angle δ).

$$\begin{pmatrix} Z_1 \\ Z_2 \end{pmatrix} = \begin{pmatrix} \cos \delta & -\sin \delta \\ \sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} Z \\ Z' \end{pmatrix}$$

Accelerator Limit

- Current collider limit:
 - $|\delta| < (2-3) \times 10^{-3}$
 - $-M_{Z_2} > (500 800) \; GeV$
- Tevatron RunII:
 - can observe $Z' < 1 \ TeV$
- Future Collider:
 - can observe $Z' < 5 \ TeV$

Decoupling of a Particle



 $\begin{cases} \Gamma(T) & : \text{ interaction rate of particle A} \\ H(T) & : \text{ cosmological expansion rate} \end{cases}$

- For $\Gamma > H$, ptl A is in equilibrium.
- For $\Gamma < H$, ptl A is decoupled.
- ullet Decoupling Temperature of ptl A : T_d

$$\Gamma(T_d) = H(T_d)$$

 $(T_d \text{ carries information about interaction of ptl A)}$

Interaction Rate $\Gamma(T)$

For SM neutrino:

For SM neutrino:
$$\Gamma(T) \equiv n \, \langle \sigma v \rangle \approx G_W^2 \, T^5$$

 $G_W \propto rac{g_Z^2}{M_Z^2}$: weak coupling constant

• For ν_R (which couples only to Z'):

 $G_{SW} \propto rac{g_Z^{\prime 2}}{M_Z^2}$: super-weak coupling constant

$$G_{SW} \ll G_W$$
 (because $M_{Z'} \gg M_Z$)

- \longrightarrow smaller $\Gamma(T)$
- \longrightarrow earlier decoupling (higher T_d)
- $M_{Z'} \iff T_d(\nu_R)$ (from above)
- $T_d(\nu_R) \Longleftrightarrow \Delta Y$ (BBN will provide)

(Steigman, Olive and Schramm, 1979)

Interaction Rate for ν_R

$$\overline{\nu_R}$$
 f_i
 $\overline{\nu_R}$
 f_i
 $\overline{f_i}$
 $\overline{f_i}$
 f_i
 $\overline{f_i}$
 $\overline{f_i}$
 $\overline{f_i}$
 f_i
 $\overline{f_i}$
 $\overline{f_i}$
 $\overline{f_i}$
 $\overline{f_i}$
 $\overline{f_i}$
 $\overline{f_i}$
 $\overline{f_i}$
 $\overline{f_i}$
 $\overline{f_i}$

$$\sigma(\bar{\nu}_R \nu_R \to \bar{f}_i f_i) = N_C^i \frac{s\beta_i}{16\pi} \left\{ \left(1 + \frac{\beta_i^2}{3} \right) \left((G_{RL}^i)^2 + (G_{RR}^i)^2 \right) + 2 \left(1 - \beta_i^2 \right) G_{RL}^i G_{RR}^i \right\}$$

$$\left(\begin{array}{l} G_{RL}^i = g_Z'^2 Q(\nu_R) Q(f_{iL}) \left(\frac{\sin^2 \delta}{M_{Z_1}^2} + \frac{\cos^2 \delta}{M_{Z_2}^2} \right) \\ - g_Z' g_Z Q(\nu_R) Q_Z(f_{iL}) \left(\frac{\sin \delta \cos \delta}{M_{Z_1}^2} - \frac{\sin \delta \cos \delta}{M_{Z_2}^2} \right) \end{array} \right)$$

$$N_C^i : \text{color factor of particle } f_i.$$

$$\beta_i \equiv \sqrt{1 - 4m_{f_i}^2/s} : \text{relativistic velocity of } f_i \right)$$

• In the no-mixing $(\delta = 0)$ and massless particles $(\beta_i = 1)$ limit,

$$\sigma \rightarrow N_C^i \frac{s}{12\pi} \underbrace{\left(\frac{g_Z'^2}{M_{Z'}^2}\right)^2 Q(\nu_R)^2 \left(Q(f_{iL})^2 + Q(f_{iR})^2\right)}_{G_{SW}^2 \propto \left(\frac{g_Z'^2}{M_{Z'}^2}\right)^2}$$

• Interaction rate: (channels up to b-quak)

$$\Gamma(T) = \sum_{i} \Gamma_{i}(T) = \sum_{i} n_{\nu_{R}} \left\langle \sigma v(\bar{\nu}_{R} \nu_{R} \to \bar{f}_{i} f_{i}) \right\rangle$$

(with u-, d- channels replaced with π under quark-hadron transition temperature)

Cosmological Expansion Rate H(T)

$$H(T) \propto \sqrt{G_N \rho(T)}$$

During Radiation Dominated epochs,

$$\rho(T) = \frac{1}{2}\rho_{\gamma}(T)g(T)$$

with

$$ho_{\gamma} = aT^4$$
: photon energy density $g(T) = \sum_B g_B \left(\frac{T_B}{T}\right)^4 + \sum_F \frac{7}{8} g_F \left(\frac{T_F}{T}\right)^4$: effective degree of freedom

- $g_{B,F}$: DOF of each Boson, Fermion $(g_{\gamma}=2,\ g_{e}=2\times2,\ g_{q}=2\times2\times3)$
- $T_{B,F}$: Temperature of each Boson, Fermion (In equilibrium, $T_{B,F}=T$ After decoupling, $T_{B,F}\propto V^{-1/3}$)

g(T) at BBN $(T \approx 1 \; MeV)$

• SM prediction :

$$g_{SM}(T) = g_{\gamma} \left(\frac{T}{T}\right)^{4} + \frac{7}{8}(g_{e} + 3g_{\nu}) \left(\frac{T}{T}\right)^{4}$$
$$= \frac{43}{4}$$

Difference from observation :

$$\Delta g \equiv g_{\text{exp}}(T) - \frac{43}{4}$$

$$(= 0 + \frac{7}{8} \Delta N_{\nu} g_{\nu} \left(\frac{T}{T}\right)^{4})$$

• In number of additional weak int. ν 's:

 $\Delta N_{
u} \lesssim (0.3-1)$: typical range from observed 4He abundance discrepancy

$$(\Delta Y \sim 0.013 \Delta N_{\nu})$$

(most stringent limit on weak int. neutrino before 1990 LEP Z-width measurement)

For Super-weakly interacting particles

• Assume observed ΔY (4He abundance discrepancy) comes from diluted contribution of (super-weakly interacting) ν_R 's.

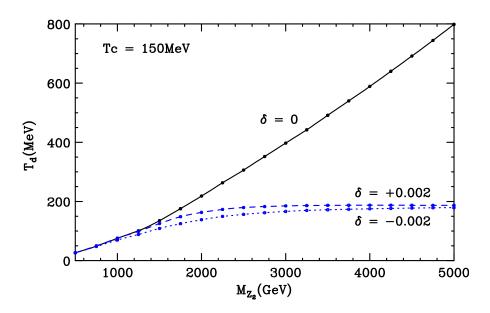
$$\Delta g = \sum_{\Delta F} \frac{7}{8} g_F \left(\frac{T_F}{T}\right)^4 = 3 \times \frac{7}{8} g_{\nu_R} \left(\frac{T_{\nu_R}}{T}\right)^4$$
$$= \Delta N_{\nu} \times \frac{7}{8} g_{\nu_R} \left(\frac{T}{T}\right)^4$$

$$\Delta N_{\nu} = 3 \left(\frac{T_{\nu_R}}{T_{BBN}} \right)^4 = 3 \left(\frac{g(T_{BBN})}{g(T_d(\nu_R))} \right)^{4/3}$$
 (from entropy conservation)

- Information about $T_d(\nu_R)$ from BBN's $\Delta N_{
 u}$ (or $\Delta Y \sim 0.013 \Delta N_{
 u}$)
- $M_{Z_2} \iff T_d(\nu_R) \iff \Delta N_{\nu}$

Numerical Result

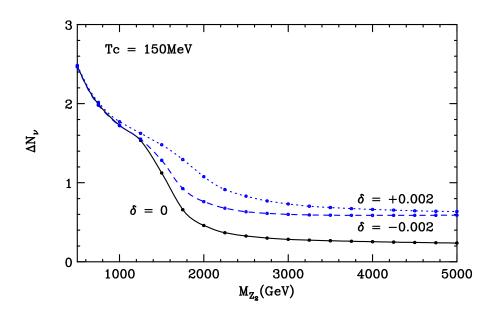
For η model $(\theta_{E_6} \simeq 1.71\pi)$:



from $H(T) = \Gamma(T) \longrightarrow T_d(\nu_R)$

- No Z-Z' mixing $(\delta=0)$: keeps increasing (heavier $Z'\to$ weaker $\Gamma\to$ higher T_d)
- ullet Maximal mixing ($|\delta|=0.002$) : becomes flat

$$\left(\sqrt{\sigma} \propto rac{\sin^2 \delta}{M_{Z_1}^2} + rac{\cos^2 \delta}{M_{Z_2}^2}
ightarrow rac{\sin^2 \delta}{M_{Z_1}^2} \; ext{(const.)}
ight)$$



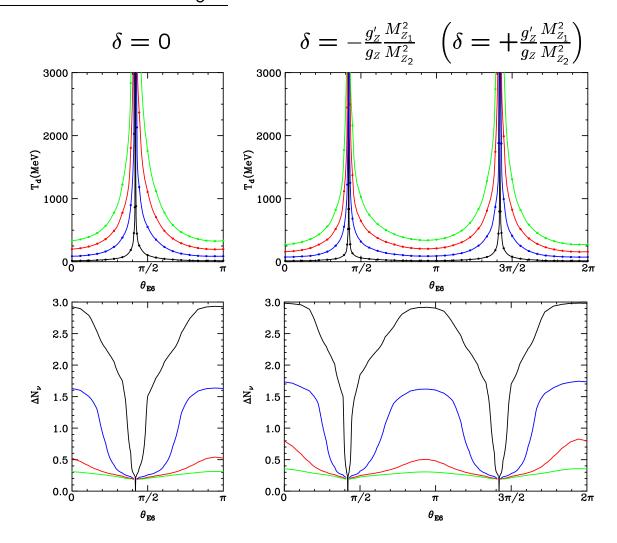
from previous plot with relation

$$\Delta N_{
u} = 3 \left(\frac{g(T_{BBN})}{g(T_d(
u_R))} \right)^{4/3}$$

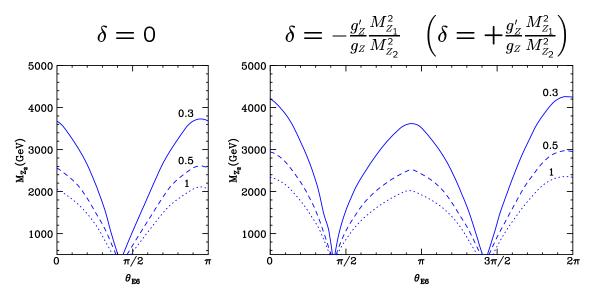
For
$$\Delta N_{\nu} <$$
 1, $\begin{bmatrix} \delta = 0 & : & M_{Z_2} > 1.6 \ TeV \\ \delta = 0.002 & : & M_{Z_2} > 2.1 \ TeV \end{bmatrix}$

For
$$\Delta N_{\nu} <$$
 0.3, $\left[\begin{array}{ll} \delta = 0 & : & M_{Z_2} > 2.8 \ TeV \\ \delta = 0.002 & : & Not \ possible \end{array} \right]$

For general θ_{E_6} :



- For $M_{Z_2} = 0.5$, 1.5, 2.5, 3.5 TeV
- At $\theta_{E_6}=$ 0.42 π (1.42 π), $Q(\nu_R)=$ 0 (ν_R not coupled to Z')



 M_{Z_2} lower bound for fixed $\Delta N_{
u}$

- (Except when ν_R does not couple to Z') BBN gives much stronger bound on mass of Z' than any present collider limits.
- The above result is when T_c (quark-hadron transition temperature) is 150 MeV.
- For higher T_c , the constraint is even severer. (T_c is between 150 and 400 MeV.)

Summary and Conclusion

- We studied, in detail, BBN constraints on Z' properties with a E_6 motivated TeV-scale U(1)' model.
- TeV-scale Z' model suggests ordinary seesaw may be forbidden because of non-zero U(1)' charge for ν_R . Our model assumes 3 (almost) massless Dirac ν_R 's.
- ν_R interacts super-weakly (due to super-heavy Z') and gives only diluted contribution to energy density.
- 4He abundace from BBN gives most stringent constraint on Z' mass unless ν_R 's are not coupled to Z'. (Mostly, $M_{Z'} \gtrsim \text{ multi-} TeV$)